Proteins that bind regulatory regions identified by histone modification chromatin immunoprecipitations and mass spectrometry

نویسندگان

  • Erik Engelen
  • Johannes H. Brandsma
  • Maaike J. Moen
  • Luca Signorile
  • Dick H. W. Dekkers
  • Jeroen Demmers
  • Christel E. M. Kockx
  • Zehila Ozgür
  • Wilfred F. J. van IJcken
  • Debbie L. C. van den Berg
  • Raymond A. Poot
چکیده

The locations of transcriptional enhancers and promoters were recently mapped in many mammalian cell types. Proteins that bind those regulatory regions can determine cell identity but have not been systematically identified. Here we purify native enhancers, promoters or heterochromatin from embryonic stem cells by chromatin immunoprecipitations (ChIP) for characteristic histone modifications and identify associated proteins using mass spectrometry (MS). 239 factors are identified and predicted to bind enhancers or promoters with different levels of activity, or heterochromatin. Published genome-wide data indicate a high accuracy of location prediction by ChIP-MS. A quarter of the identified factors are important for pluripotency and includes Oct4, Esrrb, Klf5, Mycn and Dppa2, factors that drive reprogramming to pluripotent stem cells. We determined the genome-wide binding sites of Dppa2 and find that Dppa2 operates outside the classical pluripotency network. Our ChIP-MS method provides a detailed read-out of the transcriptional landscape representative of the investigated cell type.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromatin Affinity Purification and Quantitative Mass Spectrometry Defining the Interactome of Histone Modification Patterns*

DNA and histone modifications direct the functional state of chromatin and thereby the readout of the genome. Candidate approaches and histone peptide affinity purification experiments have identified several proteins that bind to chromatin marks. However, the complement of factors that is recruited by individual and combinations of DNA and histone modifications has not yet been defined. Here, ...

متن کامل

The Proteomic Investigation of Chromatin Functional Domains Reveals Novel Synergisms among Distinct Heterochromatin Components*

Chromatin is a highly dynamic, well-structured nucleoprotein complex of DNA and proteins that controls virtually all DNA transactions. Chromatin dynamicity is regulated at specific loci by the presence of various associated proteins, histones, post-translational modifications, histone variants, and DNA methylation. Until now the characterization of the proteomic component of chromatin domains h...

متن کامل

Mass Spectrometry-Based Proteomics for the Analysis of Chromatin Structure and Dynamics

Chromatin is a highly structured nucleoprotein complex made of histone proteins and DNA that controls nearly all DNA-dependent processes. Chromatin plasticity is regulated by different associated proteins, post-translational modifications on histones (hPTMs) and DNA methylation, which act in a concerted manner to enforce a specific "chromatin landscape", with a regulatory effect on gene express...

متن کامل

Chromatin proteomics reveals novel combinatorial histone modification signatures that mark distinct subpopulations of macrophage enhancers

The integrated activity of cis-regulatory elements fine-tunes transcriptional programs of mammalian cells by recruiting cell type-specific as well as ubiquitous transcription factors (TFs). Despite their key role in modulating transcription, enhancers are still poorly characterized at the molecular level, and their limited DNA sequence conservation in evolution and variable distance from target...

متن کامل

Combinatorial profiling of chromatin-binding modules reveals multi-site discrimination

Specific interactions between post-translational modifications (PTMs) and chromatin-binding proteins are central to the idea of a 'histone code'. Here, we used a 5,000-member, PTM-randomized, combinatorial peptide library based on the N terminus of histone H3 to interrogate the multisite specificity of six chromatin binding modules, which read the methylation status of Lys4. We found that Thr3 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015